Section 1: Multiple Choice (4 points each, 40 points total)

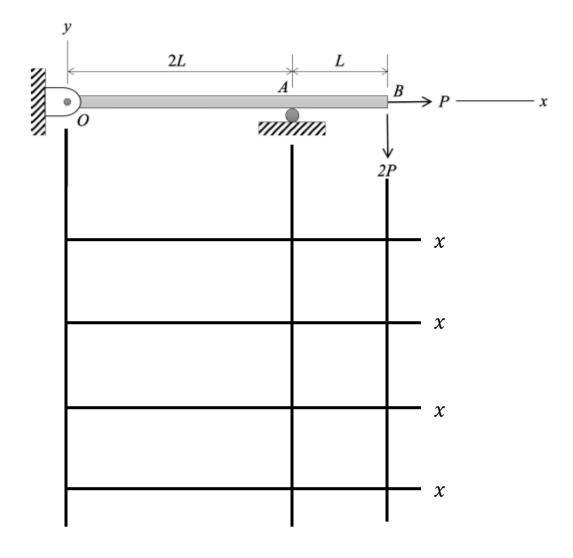
- 1. Which of the following best describes the purpose of using factors of safety in mechanical design?
 - O To optimize material usage
 - O To ensure that a design can withstand more load than expected
 - O To reduce production costs
 - O To minimize the weight of the design
- 2. Which of the following best describes the Maximum Normal Stress (MNS) theory?
 - O Failure occurs when the maximum shear stress exceeds a critical value.
 - O Failure occurs when the maximum normal stress exceeds the ultimate tensile strength.
 - O Failure occurs when the strain energy density exceeds the failure threshold.
 - O Failure occurs when the von Mises stress exceeds the yield strength.
- 3. Which failure criterion is typically used for ductile materials in static loading?
 - O Modified Mohr theory
 - O Distortion Energy Theory
 - O Maximum Principal Stress Theory
 - O Brittle Coulomb-Mohr theory
- 4. When analyzing a beam subjected to torsion, which of the following stresses must be evaluated?
 - O Normal stress
 - O Shear stress
 - O Bending stress
 - O Hoop stress
- 5. Which of the following best describes the purpose of conceptual design?
 - O To generate detailed design drawings
 - O To develop initial ideas and possible solutions
 - O To select final materials
 - O To test prototypes
- 6. The critical stress intensity factor, K_{IC} , is also known as the:
 - O Tensile strength
 - O Fracture energy
 - O Fracture toughness
 - O Geometry
- 7. Which of the following is NOT an assumption of static failure analysis?
 - O Material exhibits linear elastic behavior up to failure.
 - O Stresses are time dependent.
 - O The loading is applied gradually and remains constant.
 - O Failure is governed by a single, instantaneous load event.

- 8. What does the slope of the linear portion of a stress-strain curve represent for a material?
 - O Yield strength
 - O Modulus of elasticity (Young's modulus)
 - O Ultimate tensile strength
 - O Toughness
- 9. Which of the following failure criteria is most appropriate for analyzing the failure of a ductile material under static loading?
 - O Modified Mohr (MM) theory
 - O Maximum Shear Stress (MSS) Theory
 - O Maximum Normal Stress (MNS) Theory
 - O Brittle Coulomb-Mohr (BCM) theory
- 10. In a beam subject to pure bending, which type of stress is experienced along the length of the beam?
 - O Shear stress
 - O Normal stress
 - O Torsional stress
 - O Hoop stress

Section 2: Problem-Solving (60 points total)

11. (20 points) A circular shaft with a diameter of 30 mm is subjected to a bending moment of 600 N·m and a torsional moment of 200 N·m. The shaft is made of a brittle material with an ultimate strength in tension of 100 MPa, and an ultimate strength in compression of 400 MPa. Using the Modified-Mohr theory, determine whether the shaft will fail. Show all calculations.

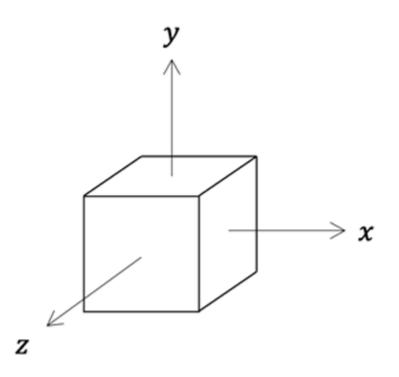
12. (40 points total) Rod *OAB* has length 3L and diameter d = L/6.

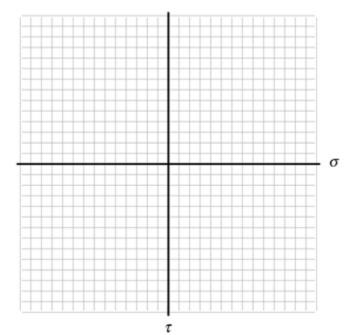

The rod is supported by a pin joint at O and by a roller at A.

Axial load *P* and transverse load *2P* act at *B*.

The rod is made of a ductile material with yield strength S_y .

Determine the following:


- a) (5 points) Solve for the reactions at O and A.
- b) (10 points) Sketch and label diagrams of the internal loads on the axes provided.
- c) (5 points) Identify the critical cross-section of rod OAB.
- d) (5 points) Identify the critical element on the cross-section identified in part (c). You may use the attached Combined Stress Analysis Worksheet to aid your analysis.
- e) (5 points) Show the state of stress on a stress element for the critical element.
- f) (10 points) The factor of safety for the critical element in terms of variables P, L, and S_y . Use both the distortion energy (DE) and maximum shear stress (MSS) failure theories. If needed, axes to draw Mohr's circle are provided on the next page.


[Problem 12 continued]

[Problem 12 continued]

Stress element for the critical element:

Axes to draw Mohr's circle:

Stress	load				Potentia critica	In this box, • Dra Ider loca (e.g
Stress element	Bending	Transverse shear ↓↓↓	Torsion	Axial	Potential location of critical element	box, Draw the critical cross-section Identify and label the potential locations for the critical elemen (e.g. top, bottom, left, right, an
x x						box, Draw the critical cross-section Identify and label the potential locations for the critical element(s) (e.g. top, bottom, left, right, and center)
x x						
N V V V X						
N V V V X						
N N N V V V V						